Corrigé du TD N°1

Exercice 1

Le lancement des deux dés donne lieu à 36 valeurs possibles. Si on désigne par D la différence des deux dés de chacun des résultats possibles, les valeurs possibles de D se présentent comme suit :

Dé n°1

Dé

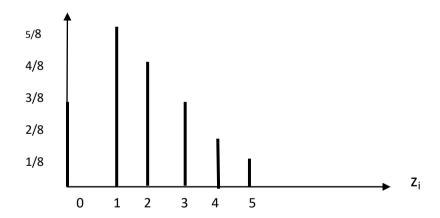
n°2

l		1	2	3	4	5	6
	1	0	1	2	თ	4	5
	2	1	0	1	2	3	4
ĺ	3	2	1	0	1	2	3
ĺ	4	3	2	1	0	1	2
ĺ	5	4	3	2	1	0	1
	6	5	4	3	2	1	0

Les trente-six cases de ce tableau étant équiprobables on en déduit la loi de probabilité de D :

d _i	0	1	2	3	4	5
Pi	6/36=3/18	10/36=5/18	8/36=4/18	6/36=3/18	4/36=2/18	2/36=1/18

Cette loi s'illustre comme suit :



La fonction de répartition de la variable D se détermine comme suit :

Pour d < 0, F(d) = 0

Pour $0 \le d < 1$, F(d) = 3/18

Pour $1 \le d < 2$, F(d) = 8/18

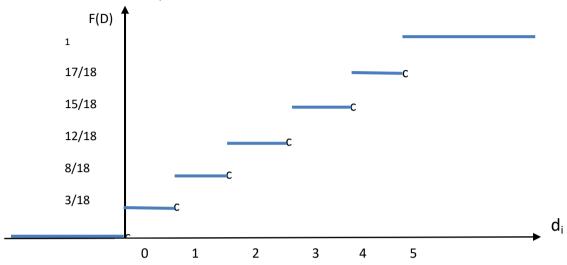
Pour $2 \le d < 3$, F(d) = 12/18

Pour $3 \le d < 4$, F(d) = 15/18

Pour $4 \le d < 5$, F(d) = 17/18

Pour d ≥ 5 , F(d) = 1

Cette fonction de répartition s'illustre comme suit :



$$E(D) = \sum_{i=1}^{N} p_i d_i = 3/18 \times 0 + 5/18 \times 1 + 4/18 \times 2 + 3/18 \times 3 + 2/18 \times 4 + 1/18 \times 5 = 35/18 = 1.944$$

$$V(D) = \sum_{i=1}^{N} p_i d_i^2 - E(D)^2$$

=
$$3/18 \times 0^2 + 5/18 \times 1^2 + 4/18 \times 2^2 + 3/18 \times 3^2 + 2/18 \times 4^2 + 1/18 \times 5^2 - (35/18)^2 = 2.052$$

$$\sigma$$
 (D) = $\sqrt{V(D)}$ = $\sqrt{2.025}$ = 1.433

Exercice 2

Si on désigne par Ω l'ensemble des résultats possibles de l'épreuve aléatoire qui consiste à tirer trois fois la pièce de monnaie.

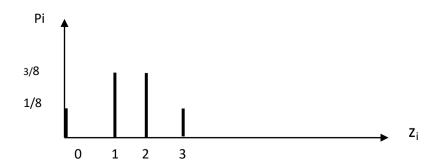
 $\Omega = \{PPP, PPF, PFF, PFP, FPP, FPF, FFF, FFP\}$

L'ensemble des valeurs possibles de la variable Z qui correspond au nombre de pile obtenue est donc

{0, 1, 2, 3}. Ainsi la loi de probabilité de Z se présente comme suit :

Zi	0	1	2	3
p _i	1/8	3/8	3/8	1/8

Cette loi de probabilité se représente par le diagramme en bâtons suivant :



La fonction de répartition de la variable Z se détermine comme suit :

Pour
$$z < 0$$
, $F(z) = 0$

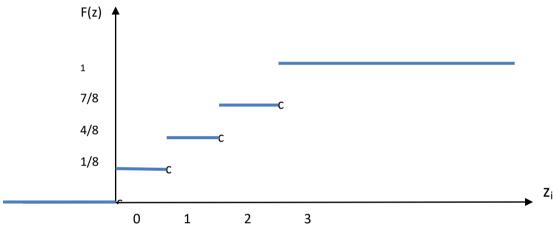
Pour
$$0 \le z < 1$$
, $F(z) = 1/8$

Pour
$$1 \le z < 2$$
, $F(z) = 4/8$

Pour
$$2 \le z < 3$$
, $F(z) = 7/8$

Pour
$$z \ge 3$$
, $F(z) = 1/8$

Cette fonction de répartition s'illustre comme suit :



$$\begin{split} E(Z) &= \sum_{i=1}^{N} p_i \; \mathcal{Z}_i &= 1/8 \, x0 + \, 3/8 x \, 1 + 3/8 x \, 2 + 1/8 \, x \, 3 = 12/8 = 1.5 \\ V\left(\,Z\,\right) &= \; \sum_{i=1}^{N} \; p_i \, z_i^2 - E\left(Z\right)^2 = \, 1/8 \, x \, 0^2 + 3/8 \, x \, 1^2 + 3/8 \, x \, 2^2 + 1/8 \, x \, 3^2 \, - 1.5^2 = 0.75 \\ \mathcal{O}\left(\,Z\,\right) &= \; \sqrt{V\left(\,Z\,\right)} &= \; \sqrt{0.75} = 0.866 \end{split}$$

Exercice 3

Soit V les ventes mensuelles de cette entreprises, puisque $\sum p_i = 1$, P (V = 8000) = 1 – 0.5 – 0.3 = 0.2

Ainsi la loi de probabilité de Z se présente ainsi :

Vi	5000	7000	8000
p _i	0.5	0.3	0.2

$$E(V) = \sum_{i=1}^{N} p_i \, v_i = 0.5 \, \text{x} 5000 + \, 0.3 \, \text{x} \, 7000 + 0.2 \, \text{x} \, 8000 = 6200$$

$$V(V) = \sum_{i=1}^{N} p_i \, v_i^2 - E(V)^2 = 0.5 \, \text{x} \, 5000^2 + 0.3 \, \text{x} \, 7000^2 + 0.2 \, \text{x} \, 8000^2 - 6200^2 = 1560 \, 000$$

Exercice 4

Si on note I le stock initial, P la production, V les ventes et F le stock final.

E(I) = 120,
$$\sigma$$
(I) = 20 \Rightarrow σ ²(I) = 400

$$E(P) = 40$$
, $\sigma(P) = 9 \rightarrow \sigma^{2}(P) = 81$

E(V) = 30,
$$\sigma$$
(V) = 12 \rightarrow σ ²(V) = 144

D'après l'identité comptable stock final = stock initial + production – vente, on a:

$$F = I + P - V \rightarrow E(F) = E(I) + E(P) - E(V) = 120 + 40 - 30 = 130$$

$$\sigma^{2}(F) = \sigma^{2}(I) + \sigma^{2}(P) + \sigma^{2}(V) = 400 + 81 + 144 = 625 \text{ d'ou } \sigma(F) = 25.$$